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Research Report

Computation of Supersonic Space Encircling Flow of Blunt-Nosed Body

Zhu Youlan, Wang Ruquan, Zhong Xichang

Computer Technology Research Institute

The Chinese Academy of Sciences

I. Introduction

Since the 1950's, "or numerical solution of the problems of supersonic

encircling
inviscid low of blunt-nosed body, a number of dif'erent methods

has been developed. Of them one cate~or-v is stationary method and the

other is nonstationary method. In the cate-ory of stationary method, there

are method of finite difference, method of integral relation and method of

lines. Applied to smooth bodies, all these methods can have satisfactory

results. Only because the nonstationary method must take steady process for

time, it has to consume a "reat deal of machine time. As for the method of

finite difference, in order to have very precise result, it needs quite a

number of net points and large machine storage capacity, and it uses more

computing time. Compared with these conditions, the method of lines has

more points of excellence. For instance, its computin' method is simple,,the

storage capacity it needs is small and, using onlr a few rars, it can bring

about satisfactory result. This article is intended to report our work of

using the method of lines to compute supersonic encircling flow of blunt-

nosed body.

We use the method of lines to make broad computation of supersonic

. . .. . . - _ . 1



encircling flow of blunt-nosed body. The objects we computed include

ellipsoid of various axial ratio and disk-analoqex bodies. The range of

incoming flow M number is 1.5 to infinity. Under the condition of axial

symmetry, besides the frozen gas of y = 1.4, we have also computed balanced

and unbalanced air.

In addition, we ,too, use the method of lines to compute the flow in

supersonic zone rnd the pointed conical encircling flow with attack anel .

To the results of computation, we make multi-way check, and all show

that the results of computatlon by using method of lines are considerably

satisfactory.

2. Ths Way of Relaying Questions

2.1 Fundamental Equation

To consider the inviscid and non-heat conducting air flow. The equation

of aerodynamics in spherical coordinate system (r, 9, q) is:

{+ A- (pvr sin 0) +

du S + , + 0o
di V Pat ,

dv + i,_-_ _0 W, + ±2L - 0 (2.1)
iT r V Tp 89

d +uw + €Sm ,,w + I .L 0
d r pr sin ( 8q

do dt
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Here a'-- +u,-' are component when

speed is alon. r, 0, p direction, p is pressure, p is density and c is

speed. In the equation, all quanity are dimensionless quantity and their

dimension factor are respoetively

P - . *, p - , , , V., • R,

Here 0o indicates the quanity of incomin flow and R. is the curvature

radius at the top of the subject.

For the convenience of computing, we introduce the followinp

transformation of coordinate,

r -- G(6, 4) 6-. e
F(6, 9)) - G(0, V)'

Here G - (O, ,) &, - F(O, 9,) are equations respectively of the object

surface and shock wave. Obviously, in (9,6, i') coordinate system, the shock

wave is in the plane of 9- I and the surface of the object is in the plane

of 9- O. Let

a -(Go,+ t,), P- .(GO,+ E,).,--F--G

Wueto _ 10 0 a 0 a
Or a0g 06 e 0 09

sin 0 OW 6 0 sin 0 P

so equation (2.1) can be rewritten into

a2._+ p (r -2.++ -- F,, --- + F, }
+ F" a -aP) F, (2.2)

a, PaO



Or written into solved form - of .-. ,.. Otv

'- [Fla -p(rF, + aF, + pF.)) + F,
fea Fs]l

0-F- [~+ ap

_ a ~
-[8-

[~ .1F, --
0 at' p~~
aw [F OP_

In the equation , a - ur + va + u'

F, - +rL-+)" +c+ + -J
F 00 sin Op 09 sin J

F,- t. ---" - + (vI + ,.)
ou sin9 aop

+ U0 + (-cos~w) +
Ie \0+ sinO / 04 o 0wwu I' O.

F4- oE + U .2owo + -V Cosa +
F,--- v -+W---O-

L\ To00 sin 6 0& 0;

2.2 Boundary Condition

(1) Condition of shock wave On the

h + A.. +
shock wave, the shock wave relation equation 2 2

must be satisfied. ' + PT* - p. + p.V 2 .
U .- u. - -- )nv.. 24

(2.4)

,,, ,v (- ),,,-..

jL



Here the quantity indicated by an infinity mark is wave-front quantity and

that not indicated by an infinity mark is wave-back quantity, V. is the
speed

projection of alon7 the direction of wave normal line, h is han, (,, , ni)

are direction cosin respectively along the shock wave normal line, namely

+(F I+-'-F.

x r

X FV

r sin 0

(2) Condition of the object surface.' On the surface of the

object, it must satisfy the condtion that the normal direction speed is zero,

namely

q Nug-vG-- Gp --O (2.5)
sin 0

3. Aumerical Solution

In order to make numerical solution, we introduce sone rays to the

solution zone. For instance, at U direction we introduce coordinate surface

of 0 = oj c m and at 9Pdirection, we introduce coordinate surface of

9 . coast , then we take the intersecting lines of these coordinate

surfaces as rays. Fbri,: we use the value of rlow parametre on the ray as

nodal Doint value to construct interpolating polynomial equation and then to

I.
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determine the partial derivative of 8 & 9 correspondinply. Let equation

(2.3) be formulated ,. the ray, then we have a constant differential

equation group and the problem of marcinal value will correspondingly

become marginal-value problem of constant differential equation 7roup. For

this reason, we chanr'e marginal-value problem into initial-value problem,

and work out solution throurh iteration, ne-nely we first assume that the

form of shock wave has been known,and,then from shock wave condition (2.4),

we have the flow parametre of wave-back. Taking this as initial value of

integral constant differential equation -roup, then we check whether the

flow parametre of the object surface can satisfy the condition of object

surface (2.5). If not, we adjust the shape of shock wave till the condition

of object surface is satisfied. The integration of constant differential

equation can use general nethod, such as quartric-valence Runge-Kutta

method. In the followin", we shall describe some specific treatment.

3.1 Equation on Axis 0- 0

Assuming that flow field is synmetrical with q 0, plane and that

axis o-o is always in a symmetrical plane. vrom equation (2.2), it can be

seen that due to the fact that sin- apoears in the denominator, the equation

at -0 - 0 must be given a treatment. Let v'--v(l, 0, 0), clearly v(9, 0, 9)-

,(1)cosq,, w(. 0, q) - - v*(J)Hnqp, N(f. 0, T) - N(9, 0, 0), P(U 0, 0 )--p(l 0, 0),

p(f, 0, V)_ p(. o, o0). By applying Low-bi-ta (transliteration of Chinese

sound and it may be a Chinese transliteration of Robert) method to o/o which

appears in equation (2.2), we can have the equation on 8- 0 . In principle,

it will do by takinr any equation from q) surface randomly. But because the

i! .. ..... . . ..6
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computing error of numerical value, of di'ferent , there will be if"'erent

results. In order to eliminate such incongruity, we make integration of

those equations of 9 from o - to induce the necessary equation. For

instanec, we use os to multiply the third equation of equation (2.2),

and take of' the fourth equation and use sin q to multiply it, then we make

integration. Due to

-a- ((ru + as, + n) dq - , so
0-

* ae

+_- CosF4 d 4p n ) u --.-

So we can have

And analogously we can have

do p + pU. + .0 0 -- F,-

8- - -.

To write into solved form of -- we can have the necessary equation

=C'[ Fj'aO - ,(r Fi + aOFO) + a*Fl'

"' Og ' - " - r+

a 1 +
au - C F a * a (2.6)

*l - a ![F ap]

'7



I -

In it,

a* 2 a~ UCos (p

a*- 
, ru -I- azt,

F - R V - cotdp + p *- - p + p
{;LeV ( Lf' cos qdqp - L*2x I o W 2

fie C * os P - sin 4P Cos T + Co ( V u,

Fe - -L - L- C2 p o) cos~ 4dp

3.2 Interpolating Ifutinomial Equation

Because the flow field is assumed to be syrnetrical with 9) - 0, o plane,

it s -nly necessar to have solution between 0 < 9) . Between 0-, we

introduce 4 + I planes. And at the Sq-e time, we make n + I conical surfaces,

a - Ok -- oast (as - 0). k - O, 1, ... , n. Ther intersect with half plrne i -,

and -. ,+x to form (2n + 1) ray.s. 'Totichn- that the flow parametre on

the Plow s7,mmetry, e-w---, and the flow parametre on g5,-+r are equal or

different by one symbol, for the fixeJ . we can utilize the vralue of

2n + I rays on 9 -w, & q - --- i to construct 2nth order interpolatinr

multinomial equation of 0.

fn .aj (2.7)

g indicates flow parametre. For the purpose of savin- time in the process

of computIng, we do not first compute coefficient ',, but use the following

computin7 methods instead. Because interpolatin7 function and its derivate



can be expressed as a linear combination of function values on interpolating

nodal point, and the linear combination coefficient is only related with

the position of interpolat~nfr nodal point and the position of interpolat4 n7

point, so when te nodal point and interpolatin point are -!ven, these

coefficients can be determined. When the function of each point and the

derivate value are computed, it will do to use these coef"icients ond the

*unction value on nodal point to make point product. Takin- ecuation

(2.7) as exarile. If nodal noint is . (m - o, 1, --., 2n), g(O) 9t 0 of some

interpblating point will be computed. Because there is condition at nodal

point,

,aX - 9g. (M - 0, 1,", 2n)

i-O

g- -g(O.). or written into matrix form:
Ma-g

Here 1 ............ Oo

..................
M.

..............................

. ............

a . .as

Therefore we have

a -

Then we can rewrite te equation of g(O),

() - d* a a

] .... 0/



EK - .. . . . .- . . . . . . . . . . . . . . . . . .; .. .. . . ... . ... . .. .. .. . . .. _ _

Into

g(o) - "•(M-'g)
- (M-"d)" "g

b •(2.8)

Here bB-- -d, d-(,,.., '). Evidently, when nodal point fnd

interpolatin7 point are giren, M* and d can be determined and then we can

have b. Similarly becnuse,

'aj.(o) - ,()-

-d* .a

- (M-'d,)

Here d - (0, 1, 20, -.., 2nx'-1), represents derivate of of so to compute

deriv.te can be of an analogous tredtmeftt.

So far as o.- is.concerned, when o is-fixed, we can utilize the value

at its intersectin, line with k + I planes to construct trigonometric

interpolating rmiltinomial equation o0f V. In computing, the method mentioned

above can also be used. For even ,'uction, we t,ke,

Then
e - (M'-'dl)" •

now there is

-cos~p c 059o "' P~

\Cos 9p0 Cos 9)1t... Cos 9'
d; - (, -OaP , ... , ---C O$ s' ) i

* (0, -,sin, 9 , ) 1sinqcos119)

10



For I~dp -jgcosqdV , similar exonression can also be written.It is

not necrssary to examplify them here. For odd function, we take,

g-- ,co4psin go
d-0

Then
- (M'-'da)gs

Now

sin T sin (Pa .............. sn 9)*-,
sin " q), cos 9),

sin 9),cosA-jq , sin 9)cos -'q, "" sin 9p-,cos4-'qP_,-

d, (cosqp, - sin'q) + coseqp, -.. , (k - 2)cos-"pWsin'4p + €os-',)

In addition to the methods mentioned above, we also use the following

methods to construct interpolating multinonial equations. For even function

of 9), we tke

-(9) E g,,(P)O$osF

For odd function, we take

i3 =0

In order to make the 4.uction and the deria e of 0 at 0 = a in some sense

be sin-le value, some proper condition must be added to the multinoial

equation. I-ow we try to describe such conditions.

For instance, "or shock wa'e form, , - F(9, ,), we natural.y require,

when 9 - 0, it has no relationship, *ith V. This means that we require when

0 F - 0. And at the sane time, in order to warrant that the normal

11
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line has definite direction and when 0- 0 , the normal line direction

spherical coordinate should have such a form: (a, bcosW, -isinq) and in it

a and b -are constants. This means to require F,1 - 0(i Q 1). So for F, the

multinomial. equation should be:

F(O, ) -FO + F,,Ocosq) + FjVco'q, (2.9)

Obviously, u,p, -nd p should also have the sane form as F. The above

conclusion and the form of v and w can be obtained as well in the followin"

way. Let

-~ ~ - g e-() + g,, ,,()oiCov9)

i' nY .::Ying; r: ii72zr::: Oin 4P Oi-
I 

i-o

Here g can be used to express p,p,u,F, and utilizes the property v(g, 0, q)

,4cosq, g,( , O, 9))- - Asn p, then there is v01 - 0 (i 1), gv, -= O(i * o), , = - .

To combine the above equation with equation (2.2),we notice that,

a - G(O, W) - G&(O, O)coso,
80

GI - G#(O, 0) sin ip

(Here the object body is s'nmmetrical with O O, surface), so when 0- 0

we have

do__+ d- pot Gf + (F 11  Gt) 1d-' - lim F,

d - + - S . lim F,
off p- - d e-o

1?



o d
- ( rop Ge~+ .( F 1  G~) P) csi (P lim F

dro Go, + GPoo 

(" - mdp in -i. 00

In it
In ot a° - VoI, G. + (F. - Go)

ro- G(O, 0) + -iF,- G(o, 0)1

G, - -!- G(O, 0)

Po

To write the ri-ht end of the above eOuation into lnultinomial equation of

coslp (or, in addition, to multiply it by sinq)), and to use 'he linear

independence of I, cos ,- .,cos , we can reason out that g should have the

-orm of equation (2.9) and v and w should take,

V - VaCOS 'p + V,0O + V, Mos'p + .. V.,O'Cosqp

u , - Vol sin T - v2,O Cos (J sin ip + --I ± ,.coS11) sin Ip

At the same time, we have equation on 0 = 0:

dpoo d+uo - pool CGo + 9(F, - G#) d--
S" rop- d

4

= - (F, - G(0, 0))[uopj, + Poo(vu; + 2 v1, + 2"oo)J

do + F, , = (Pu - G(O,0)),o,(u, - ,ol)od- POO dr

dv,, _ Gen + E(F,, - Go) (2.10)

- - (PF - G(O, 0)) Vt..(vto + VIP + u.) +

13
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3.3 Iteration MIethod

As what has been stated at the be-innin- of this sec
tion, we shall try

to solve the problem of marrinal value throu-h iteration. In fact, it can

be interpreted as a problem of solving" a transcendental equation -roup. That

is to select one 'roup of Fi (to 4ndicate the shock wave form on ith ray),

To make,
q ,( F , ,~ ~ ' 'Q F-. I0 ( p 2 , ., )

-ere q, - 0 is the boundary condition (2.5). We use Newton method, namely to

use alteration quantity 8F. of Fi to satisfy the following eauation:

- 8F,- q, (0-1 .- ,

., OF,

partial
Usually there is no way to express derivate by using anal-rtic equation,OF,

so we use numerical value method, namely

-, F,_F, •, F__ , F, + Fj,, F.41, .. , F.) - S# , -. F.)
OF, &Fj

By using this method, it needs m + 1 times of integration for each iteration,

so it consumes a -reat deal of machine time. For the purpose of saving time,

we can use the simplified Newton method, but because of the lack of accuraorr

in msot of -2,, the speed of converr-ence, therefore,can possibly becomeOF,

slow. In order to make 2 more accurate without increasin7 much of the
aF

volume of computation, ve su-gest a method as follows. Let Q indicate the

vector constructed from q, **, q. R is the vector constructed from FI,

is
... , Fro. Q'derivative index of Q to R. If Q(%o) = Qo, and at other m-point

of RI, ... , Ran, close to RO, Q(Ri) = Qi(i = n, .. , m) has been known, and

if o - Ri(i = 1, 2, .. , m) is linear independent, then Q'o can be decided



approximately by Ri and Qi. In fact, because

Q, - Q, + O'0(R, - R0) (I -I p, 2, ...,m)
So there is Q0, - Pa. --, - Pa) ft N(R, - R,,., R. - Re) "
and then there is

; - (Q. - , Q. - 90)(R,- R,...,R. R,)-
thus we can have an iteration formula

R., - R. - (R.. - R., ... , R., - R.)(Q._, - Q., ...Q., - Q.)-,-.
n - m + 1, "(2.11

Evidently, using the above equation to make iteration and bef'in with RI,

... , Rm+ to solve Q,, " Q.., needs m + 1 times of integration. But

thereafter, one iteration needs onlr one time of intesgration.

Now we try to make a simple estimation of the speed of convermence.

Obviously, when

F?.+, - (RI - R.+,P.. --- R. - I.+,) -F- E

equation (2.11) becomes difference half Newton formula. Here E is unit

matrix and A? is pure quanty. Because now there is,

(Q, - Q. , ., Q. - ,- Q-R-+ + o(F')

Then there is

,= R., Q.+, + -+ o(tF)

And thereupon we can have an estimation equation for difference half Newton

formula.

R" - Rm 2 - R - R0+1 +

- o(IR* - R. 1II) + o(&FIIQ.+,II)
or written into AR R.11 < 41R* R.-111 + BAFIQ.-I (n - 1,2,

15
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Here R* is true solution, II11 Vindicates mode, and A and B are suitable

constants. Similarly, for difference simplified Newton method, there is an

estimation equation,

!iR* - R.11 R..,J + D 'FjQ.-,lJ + C1uR.., - R.-,hIIQ.-,I
(n -n i+ 2,.--)

For the method su,-ested by us there is an estimation equation,

IIR* -- R.II < A1R* - R.-I + D!I'II sup HR.-- -

Here A, B, C, and D are constants.

It ic easy to see that when AF & IIR* - R.-,1I are of same quantity

level or smaller, difference Newton method basically maintains the speed of'

convergence of Newton method. But hIR. ,- R.-II is Tenerally increased as n

is increased, so of simplified Mewton method the speed of converpence is

slow. Because s-,II sup fiR., - R-,-ll - o(), and sup IIR.-, - R.-,-,II is

reduced as n is increased, so the method sulgested byr us can possibly

converge faster than simplified Newton method. This has been proved in

practical computation.

3.4 Selection of Initial Shock Wave and Interpolation of Object
Surface Quantity

Whene the mietheft metionbd above ame used to make iteration, the success

in computing will depend on how well the selection of initial shock w-ve is

made . For this reason, we use the ready results accordinq to the way of

some parametre ,radual trnsition. For instance, when we w-.nt to compute

16



the flow result under certain attack angle -*, we select attack angle 7) as

parametre. After the result of Io has been obtained (Or example o = 00),

the result can be used as initial value to compute-';& + Al o After we have

had the result of r. + An we use the results of n., + &, to obtain initial

value of i)o + 24T) by way of linear interpolation. In the same fashion, till

we haie the result of y*. ks for the initial shock wave form which is needed

in the beninninp of computing, it can be secured by utilizing the result

available currentlv.

From equation (2.3), it can be understood that on the object surface

a = 0, so integration cannot reach the object surface. In order to have

the quantity of object surface, we use extrapolation method. When

integration reaches a certain "(for example C*-01), then we use

the E values of a few neighbouring points to extrapolate the

object surface quantity for example using the values of

t-0.3,0.2,0.1 makes a quadratic interpolation. Here we would like

to make a random suggestion that if the other computing form,

such as implicit form integration, extrapolation can be

completely avoided. For a situation of axial symmetry, we

designed another form to compute, and the result proves that

it is a success. Here we have no plan to give its details.

4. Computation Results

We have made broad computation on blunt-nosed body, axial symetry and

three-dimension space encirling flows by using the methods mentioned above.

The object forms we computed include ellipsoid of various axial ratio ind

objects analogous to disk (object expressed by7 equation z + (xa + y') -



, t 2). The ran-e of incoming flow M is 1.5 < 0 o. Por the situation

of axial symmetry, besides the frozen -as of Y = 1.4, we compute the

blalanoed air as well as the unbalanced. The method we used is borrowed

from article 12 in tbe bibliography appended to this article. The patterns

of unbalanced air are -resented in another article of ours. The precision

of our comoutation results have been checked by several dif"erent ways. One

of the checks is made in computinr as it is in process. For instance, we

use di'ferent number of rays and different integral step len-th to check

the relations which should be satisfied by flow field, such as maintaining

constancy. Another way is to compare

With other results accuired from Ad.-.s

experiments and other methods,such
-3 M-4

as integral relation method. All the

checks we made ind'cate that the

precision of our computation results

is satisfactory. In the followin-, we

shall present a part of our computation

results.

1.6 1.4 1.2 1.0

Figure I illustrates the forms
vi-ure I Forms of shock wave

of shock wave and sonic line of and sonic line of frozen -as
encirlin7 rlow

frozen -as spherical flow under

different At. =mber. From the Fiwe, it can be understood that the forms

of sonic line are of two different types. When I > 3, the limit characteri-

stic line is the second fanily7 characteristic line that can reach sonic

18
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point of the object surface. But when V 3, the limit characteristic linc

is composed of the first family characteristic line (whinh onmp from

object surface) in contact with sonic line and the second family character-

istic line ( which comes from shock wave).

1.0 
A

0.8

0.6 30

0.4 - =

0.2 0.4 0. 08 .

Figure 2 Distribution of pressure
alon, object surface

Fitgre 2 shows the distribution

of object surface pressure of frozen Figure 3 Shock wave position
and sonic line form

gas spherical flow. (M..- 3)

Figure 3 illustrates M. - 3, y - 1.4, the shock wave form and sonic

line position of different objects. For vevr blunt body, if n '2C, shock

wave position will basically maintain unchanged. After the contraction of

the curvature radius of object surface adjacent to sonic point, for solid

M. number, be!inminr wi th a certain curvature, there will be torsional

point on the sonic line.

Figure 4 shows shock wave position and sonic line form of balanced air

19
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spherical flow. The conditions of incoming flow --re M. - 4, p. - 0.87 X 10'

dyne/cm2 , p. - 0.95 x 10-6g/ ,' M.3 - 20, P- - 0.122 X 10' dyne/cm2 ,

P- 0.192 X iO-' g/c=3. From the FiMure, it can be seen that ionization

M.-20 M-20

12 1.0 0.8 1.2 1.0 0.

FiMure 4 T-orm of shock wave Figure 5 Form of shock wtve
and sonic line of and sonic line of
balanced air srhericl unbalanced air

flow spherical flow

--- frozen

#o _. balanced"
' 0.16 - ,-- unbalanced .

0.14

M.2 - '
\". =0.94 x 10, dye/cm2 '

o., \.".,p.=.122o-X _0dn/M
0,06- - --- ' " ""I , .=o.,92xJO.I ,cm3

4 10 t0 3 M.

Figure 6 The detatchment distance of stationary point shock w-ve
following U- to charge

mkes the situation of hock wave osition and sonic line with frozen gas of

S- 4change remarkably, Shock wave moves much closer to the object
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surface.

Fioure 5 shows shock wave position and sonic line forn of unbalanced

air spherical flow. The conditions of incoming -ow -re P. - 0.947 X 10'

dzrne/c&, P. 0.123X10-' -/cm3, R-- 5 cm. What is worth of attention is the

special form of Xf. - 20 s-nic line at the place of shock wave.

Fiure 6 shows the relationship between the detatchnent distance of

stationary point and M. number. For frozen flow, when M>10, it remains

unchanged. For balanced air, following the increase of A., the change

of detatchment distance apperas to be not unique.

Using 5 raTs to conpute encfrling Ploy of axi--l symmetry.

Figure 7 shows that of the ellipsoidal flow of 8 - 1.5 when- '. -X 3 & 4,

shock wave and sonic line in symmetrical plane will follow the change of

attack anxle **. Figure 9 shows that the object surface pressure in s7mmetric

plane will follow the chan-e of attack angle. Also Frlure ' shows position

of stationary point and, in accuracv, stationar angles of M.- & AI.-4

are overlappin-. When attack angle is chan-in,, it moves alon object

surface by almost the sine speed. Figure . shows t-at shock wave and

sonic line in 9) - x/2 plane follow the chan~e of attack angle. In the Figure,

it can be seen that the chan-e of shock wave form is slow and t+e chance of

sonic line is faster.

Figure 10 shows the encirlinr, flow of disk-analogue object of
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1, 1

A' ,/' 20 ~ .

2 / 7 0.6 0.6

0 4 0.4

3 I . 15*

0.2 02

+ 0.

5 jdJ(M.-4,3) 1-0

1. .. ~i4 0 1.2 1.0 * * 040.J

-0.2 Figure 8 Shock wave form and
sonic line followin-r

-- 0.4 the chan'e of attack

- angle
-0.6 (M.- 4, 6 15

-0.8

-- 5.8, 20 and shock wave form
-14 .- 4

5 0 t (12]. and sonic line position on symmetric
-. 2

plnie under different attack an-le.

Figure 7 Shock wave form and Figure 1i shows the distribution of

sonic line in sym-
metrical plane object surface pressure in syrmnetric
following the change
of attack angle plane.

(a - 1.5)

(1. sonic line, 2. shock wave,

3. direction of incoming flow, When we conpute space encirlinq

4. stationarY point, 5.result
from article 12) flow, we take four q' surfaces vnd

from each q surface we take 4 rays. Because the axis line is cormon, we

take 13 rays alto-ether. The z axis of coordinate system is plnced in the

syrametrical plane of flow field, and , "or the convenience oP compuutinR, we
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let it make an attack an:le with angle - (0.5-0.6) ',7 of the object

s~f~ietrical axis.

0.4

A 0.6

- 1
4) -0.8 -0.6 -. 4 -0.2 0 0.2 0.4 0.6 0.8 1.0

FI'-ure 9 Object surface pressure in sy etrical plane
'ollowin- the chane of attack anole (6- 1.5)
1) result from article 12

-, W-0

•P !.0-

0.9

0.6. 

-.0.5

-1.0-0.8-0.6-0.4-0.2 0 0.2 0.4 C A 0. I 10

Figure 10 Shock wave form Figure Ii The distribution of object
and sonic line surface pressure in
position on syrn- symmetrical surface
metrical surface ( . 8, 20)
(At. - 5.8, .- 20)

About the problem of whether the greatest entropy value on object
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surface can be reached, from our experience of computinG, we think that for

a certain object in a certain error range, the greatest entropy can be

reached.

In order to check our computation results, we use several different

kinds of ways. For instance, for axial synvmetrica]l enc 4rlin- Plow, we use

5 rys and 3 rays respectively to compute and the result shows that error is

no more than 1%. We also use different inte-ral step len-th, for example,

for spherical flow of 1.-6, y - 4, from shock wave to object surface we

inte-rate 10-step, 20-step and 10-step. The relative eror of 10-step and

20-step is no more than 0.3', and between the results of 20-step and 80-

step there are at least three sane effective dic'its. This means that we do

not have to worry about the increase of roundingoff error.

We compare the results of M.- 3, 8- 1.5, ,,- 150 with those of Telenin[1 6 ]

they are completely identical as showed in Figure 1. For ellipsoidal and

spherical frozrn flow of a - 1-.5 , our computation results have three coincide

effective diaits with the results Belotserkovskiv obtained bv using integral

rela+.ion method.

We also made inte.ration check and examine the accuracy of inte-ral

equations

IL pu ' do - 0

J u-. do + Jp,- .do- 0
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1/ t, 2, 3)

*do no 0

!ere x; ind4.cates thiee axial unit vectors under rectan-ular coordinate,ui

is tle projection of velocity vector u at three d'rections, 6 is a c-rved

surface containing no shock wve. Under the condition of M. - 4, - 1.5,

and 71 - 100, 200, the inter ration result can be found in Table 1. %,esides

the total inte-ration, Table 1 also u'-ows the inte-'ation on shock w-ve,

Table I Inte.ration Check f.- - 4, 6- 1.5, L- 0.671

-Shock wave Object Conical
Equation surface surface surface Total

* Mass -. 64327 X2 O.00U66 X2 0.64517x2 0.00256x2
' [Ilj 0.04595x2 -0.00731 x2 -0.03849x2 0.UO15X2

30. 0M A2 0 o 0 0
ral 0.67039X2 -0.32282X2 -0.34862x2 -0.0U105X2

Etropy -0.05781)x2 0.00006)(2 0.05809 x2 0.00026x 2

Mass -0.63088x2 0.oUwS4x2 u.63299YS2 0.00244A2
* V VPWjf 0.09011X2 -0.01579X2 -0.073YE82 0.00035r2

20" FZvi 0 0 0 0

a )'R42 0.65271 x2 -O.3087 x2 -0. 34423x2 -0.00139X2

Entropy -0.056379x2 0.0000sx2 0.05663x2. 0. 00033 x 2

(* x,y,z direction momentum)

object surface and conical surface. From Table 1, it can be seen that the

computation results are accurate, and there is error only at the third digit

of the inte-ration on shock wave and conical surface. The object surface

condition is well satisfied and it is at 10-4 numerical level.

In addition, we also compute the total energy on all nodal points and
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and entropy of each nodal point on object surface. From Table 2, it can be

Table 2 Error of Total Energy Table 3 Entropy Value of Nodal
The accuracy value of At.- 4. ' + +' Point on Object Sur-

2 r face (inp-lno)
v-_-,w is 0.65625 When At.-4, 6- .5, 0-

Total ener, Relative 0.61, V -e0 the accuracy

maximm error value i.3
1 -deviation \ 0. to* 20"

0" 0.0010 0.15S%0. 0.0010 0.5% 0. 0 -2.31903 -2.31537 -2.30611
S.0.0019 0.30% ____ _____

10, 0.0034 0.51% 0 -2.31346 -2.30865

1," 0.0051 0.78% W f -2.31853 -2.31474 -2.30962

20' 0.0087 1.33% -. 5 -2.31833 -2.31361
x -2.32091 -2.31850

0 -2.32040 -2.32554

seen that for M. - 4, 6- 1.5, when 22' Jo -2.31951 -2.31942 -2.32117
• x-2.31939 -2.31759

50. 15pthe relative error of total x -2.32077 -2.32111

0 -2.31276 -2.30283
energy is less than 1%. From Table 3, 33 -2.31723 -2.31543 -2.31361

119 -2.31854 -2.31903
it can be seen that for U.-4, 5-1.5, - -2. 32045 -2.32421

and 17:15, the entropy of object

surface is different only by 1 at the third effective digit, and for'- 200,

there is only a difference by 3 at the third digit.

In summary, using method of lines to compute encirlinq flow of smooth

bodies can produce very satisfactory results.

Comrades Rai Wei-ming participated in part of this work, He Jiao-min

gave us significant help, and Feng Kang once enthusiastically, led us to

work on this project. Here we thank them all.
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